Extracting and Learning an Unknown Grammar with Recurrent Neural Networks

نویسندگان

  • C. Lee Giles
  • Clifford B. Miller
  • Dong Chen
  • Guo-Zheng Sun
  • Hsing-Hen Chen
  • Yee-Chun Lee
چکیده

Simple secood-order recurrent netwoIts are shown to readily learn sman brown regular grammars when trained with positive and negative strings examples. We show that similar methods are appropriate for learning unknown grammars from examples of their strings. TIle training algorithm is an incremental real-time, recurrent learning (RTRL) method that computes the complete gradient and updates the weights at the end of each string. After or during training. a dynamic clustering algorithm extracts the production rules that the neural network has learned.. TIle methods are illustrated by extracting rules from unknown deterministic regular grammars. For many cases the extracted grammar outperforms the neural net from which it was extracted in correctly classifying unseen strings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inducing Regular Grammars Using Recurrent Neural Networks

Grammar induction is the task of learning a grammar from a set of examples. Recently, neural networks have been shown to be powerful learning machines that can identify patterns in streams of data. In this work we investigate their effectiveness in inducing a regular grammar from data, without any assumptions about the grammar. We train a recurrent neural network to distinguish between strings ...

متن کامل

Multi-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks

Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...

متن کامل

Rule Revision With Recurrent Neural Networks

Recurrent neural networks readily process, recognize and generate temporal sequences. By encoding grammatical strings as temporal sequences, recurrent neural networks can be trained to behave like de-terministic sequential nite-state automata. Algorithms have been developed for extracting grammatical rules from trained networks. Using a simple method for inserting prior knowledge (or rules) int...

متن کامل

Integration of Deep Learning Algorithms and Bilateral Filters with the Purpose of Building Extraction from Mono Optical Aerial Imagery

The problem of extracting the building from mono optical aerial imagery with high spatial resolution is always considered as an important challenge to prepare the maps. The goal of the current research is to take advantage of the semantic segmentation of mono optical aerial imagery to extract the building which is realized based on the combination of deep convolutional neural networks (DCNN) an...

متن کامل

Knowledge Extraction and Recurrent Neural Networks: An Analysis of an Elman Network trained on a Natural Language Learning Task

We present results of experiments with Elman recurrent neural networks (Elman, 1990) trained on a natural language processing task. The task was to learn sequences of word categories in a text derived from a primary school reader. The grammar induced by the network was made explicit by cluster analysis which revealed both the representations formed during learning and enabled the construction o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1991